An assessment of the role of reactive oxygen species and redox signaling in norepinephrine-induced apoptosis and hypertrophy of H9c2 cardiac myoblasts.

نویسندگان

  • Manveen K Gupta
  • T V Neelakantan
  • Mishra Sanghamitra
  • Rakesh K Tyagi
  • Amit Dinda
  • Subir Maulik
  • Chinmay K Mukhopadhyay
  • Shyamal K Goswami
چکیده

Cardiac myocytes, upon exposure to increasing doses of norepinephrine (NE), transit from hypertrophic to apoptotic phenotype. Since reactive oxygen species (ROS) generation is attributed to both phenomena, the authors tested whether an elevation in intracellular ROS level causes such transition. H9c2 cardiac myoblasts upon treatment with hypertrophic and apoptotic doses of NE (2 and 100 microM, respectively) transiently induced intracellular ROS at a comparable level, while 200 microM H(2)O(2), another proapoptotic agonist, showed robust and sustained ROS generation. Upon analysis of a number of redox-responsive transcription factors as the downstream targets of ROS signaling, the authors observed that NE (2 and 100 microM) and H(2)O(2) (200 microM) were ineffective in inducing NF-kappaB while both the agonists upregulated AP-1 and Nrf-2. However, the extents of induction of AP-1 and Nrf-2 were not in direct correlation with the respective ROS levels. Also, AP-1 activities induced by two doses of NE were intrinsically different, since at 2 microM, it primarily induced FosB, and at 100 microM it activated Fra-1. Differential induction of FosB and Fra-1 was also reiterated in adult rat myocardium injected with increasing doses of NE. Therefore, NE induces hypertrophy and apoptosis in cardiac myocytes by distinct redox-signaling rather than a general surge of ROS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy

Objective(s):  The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...

متن کامل

Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation

Despite recent advances, the role of ROS in mediating hypertrophic and apoptotic responses in cardiac myocytes elicited by norepinephrine (NE) is rather poorly understood. We demonstrate through our experiments that H9c2 cardiac myoblasts treated with 2 µM NE (hypertrophic dose) generate DCFH-DA positive ROS only for 2h; while those treated with 100 µM NE (apoptotic dose) sustains generation fo...

متن کامل

Portulaca oleracea protects H9c2 cardiomyocytes against doxorubicin-induced toxicity via regulation of oxidative stress and apoptosis

Abstract  Background and Objectives: Doxorubicin as an effective chemotherapeutic agent is frequently used in various cancers. Nowadays, the application of doxorubicin is limited due to its cardiotoxic effects. The important mechanism which is involved in the cardiac injury of doxorubicin is the generation of reactive oxygen species; therefore antioxidant compounds may reduce cardiotoxicity. ...

متن کامل

نقش استرس اکسیداتیو در تکثیر بی‌رویه و مرگ سلولی

Abstract During normal cellular activities Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) are produced. In addition to beneficial functions they play a critical role in cell death and prevent apoptosis. Every cell is equipped with an extensive antioxidant defense system to combat the excessive production of active radicals. Oxidative stress occurs with destruction of cellu...

متن کامل

Pioglitazone alleviates oxygen and glucose deprivation-induced injury by up-regulation of miR-454 in H9c2 cells

Objective(s): Pioglitazone, an anti-diabetic agent, has been widely used to treat type II diabetes. However, the effect of pioglitazone on myocardial ischemia reperfusion injury (MIRI) is still unclear. Herein, the objective of this study is to learn about the regulation and mechanism of pioglitazone effects on oxygen glucose deprivation (OGD)-induced myocardial cell injury.Materials and Method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antioxidants & redox signaling

دوره 8 5-6  شماره 

صفحات  -

تاریخ انتشار 2006